Skip to main content
Context. The formation processes and the evolutionary stages of high-mass stars are poorly understood compared to low-mass stars. Large-scale surveys are needed to provide an unbiased census of high column density sites that can... more
Context. The formation processes and the evolutionary stages of high-mass stars are poorly understood compared to low-mass stars. Large-scale surveys are needed to provide an unbiased census of high column density sites that can potentially host precursors to high-mass stars.
Aims. The ATLASGAL survey covers 420 sq. degree of the Galactic plane, between −80◦ < l < +60◦ at 870 μm. Here we identify the population of embedded sources throughout the inner Galaxy. With this catalog we first investigate the general statistical properties of dust condensations in terms of their observed parameters, such as flux density and angular size. Then using mid-infrared surveys we aim to investigate their star formation activity and the Galactic distribution of star-forming and quiescent clumps. Our ultimate goal is to determine the statistical properties of quiescent and star-forming clumps within the Galaxy and to constrain the star formation processes.
Methods. We optimized the source extraction method, referred to as MRE-GCL, for the ATLASGAL maps in order to generate a catalog of compact sources. This technique is based on multiscale filtering to remove extended emission from clouds to better determine the parameters corresponding to the embedded compact sources. In a second step we extracted the sources by fitting 2D Gaussians with the Gaussclumps algorithm.
Results. We have identified in total 10861 compact submillimeter sources with fluxes above 5σ. Completeness tests show that this catalog is 97% complete above 5σ and >99% complete above 7σ. Correlating this sample of clumps with mid-infrared point source catalogs (MSX at 21.3 μm and WISE at 22 μm), we have determined a lower limit of 33% that is associated with embedded protostellar objects. We note that the proportion of clumps associated with mid-infrared sources increases with increasing flux density, achieving a rather constant fraction of ∼75% of all clumps with fluxes over 5 Jy/beam being associated with star formation. Examining the source counts as a function of Galactic longitude, we are able to identify the most prominent star-forming regions in the Galaxy. Conclusions. We present here the compact source catalog of the full ATLASGAL survey and investigate their characteristic properties. From the fraction of the likely massive quiescent clumps (∼25%), we estimate a formation time scale of ∼7.5 ± 2.5 × 104 yr for the deeply embedded phase before the emergence of luminous young stellar objects. Such a short duration for the formation of high-mass stars in massive clumps clearly proves that the earliest phases have to be dynamic with supersonic motions.
Research Interests:
Using the 870 μm APEX Telescope large area survey of the Galaxy, we have identified 577 submillimetre continuum sources with masers from the methanol multibeam survey in the ◦◦◦ region280... more
Using the 870 μm APEX Telescope large area survey of the Galaxy, we have identified 577 submillimetre continuum sources with masers from the methanol multibeam survey in the
◦◦◦
region280 <l<20;|b|<1.5.94percentofmethanolmasersintheregionareassociated with submillimetre dust emission. We estimate masses for ∼450 maser-associated sources and find that methanol masers are preferentially associated with massive clumps. These clumps are centrally condensed, with envelope structures that appear to be scale-free, the mean maser position being offset from the peak column density by 0 ± 4 arcsec. Assuming a Kroupa initial mass function and a star formation efficiency of ∼30 per cent, we find that over two-thirds of the clumps are likely to form clusters with masses >20 M⊙. Furthermore, almost all clumps satisfy the empirical mass–size criterion for massive star formation. Bolometric luminosities taken from the literature for ∼100 clumps range between ∼100 and 106 L⊙. This confirms the link between methanol masers and massive young stars for 90 per cent of our sample. The Galactic distribution of sources suggests that the star formation efficiency is significantly reduced in the Galactic Centre region, compared to the rest of the survey area, where it is broadly constant, and shows a significant drop in the massive star formation rate density in the outer Galaxy. We find no enhancement in source counts towards the southern Scutum– Centaurus arm tangent at l ∼ 315◦, which suggests that this arm is not actively forming stars.
Research Interests:
We present the Red MSX Source survey, the largest statistically selected catalog of young massive protostars and H ii regions to date. We outline the construction of the catalog using mid- and near-infrared color selection. We also... more
We present the Red MSX Source survey, the largest statistically selected catalog of young massive protostars and H ii regions to date. We outline the construction of the catalog using mid- and near-infrared color selection. We also discuss the detailed follow up work at other wavelengths, including higher spatial resolution data in the infrared. We show that within the adopted selection bounds we are more than 90% complete for the massive protostellar population, with a positional accuracy of the exciting source of better than 2 arcsec. We briefly summarize some of the results that can be obtained from studying the properties of the objects in the catalog as a whole; we find evidence that the most massive stars form: (1) preferentially nearer the Galactic center than the anti-center; (2) in the most heavily reddened environments, suggestive of high accretion rates; and (3) from the most massive cloud cores.
Research Interests:
We present a complete sample of molecular clumps containing compact and ultracompact HII (UC HII) regions between l = 10◦ and 60◦ and |b| < 1◦, identified by combining the APEX Telescope Large Area Survey of the Galaxy submm and CORNISH... more
We present a complete sample of molecular clumps containing compact and ultracompact HII (UC HII) regions between l = 10◦ and 60◦ and |b| < 1◦, identified by combining the APEX Telescope Large Area Survey of the Galaxy submm and CORNISH radio continuum surveys with visual examination of archival infrared data. Our sample is complete to optically thin, compact and UC H II regions driven by a zero-age main-sequence star of spectral type B0 or earlier embedded within a 1000M⊙ clump. In total we identify 213 compact and UC H II regions, associated with 170 clumps. Unambiguous kinematic distances are derived for these clumps and used to estimate their masses and physical sizes, as well as the Lyman continuum fluxes and sizes of their embedded H II regions. We find a clear lower envelope for the surface density of molecular clumps hosting massive star formation of 0.05 g cm−2 , which is consistent with a similar sample of clumps associated with 6.7 GHz masers. The mass of the most massive embedded stars is closely correlated with the mass of their natal clump. Young B stars appear to be significantly more luminous in the ultraviolet than predicted by current stellar atmosphere models. The properties of clumps associated with compact and UC H II regions are very similar to those associated with 6.7 GHz methanol masers and we speculate that there is little evolution in the structure of the molecular clumps between these two phases. Finally, we identify a significant peak in the surface density of compact and UC H II-regions associated with the W49A star-forming complex, noting that this complex is truly one of the most massive and intense regions of star formation in the Galaxy.
Research Interests:
We have used the well-selected sample of ∼1750 embedded, young, massive stars identified by the Red MSX Source (RMS) survey to investigate the Galactic distribution of recent massive star formation. We present molecular line observations... more
We have used the well-selected sample of ∼1750 embedded, young, massive stars identified by the Red MSX Source (RMS) survey to investigate the Galactic distribution of recent massive star formation. We present molecular line observations for ∼800 sources without existing radial velocities. We describe the various methods used to assign distances extracted from the literature and solve the distance ambiguities towards approximately 200 sources located within the solar circle using archival H I data. These distances are used to calculate bolometric luminosities and estimate the survey completeness (∼2 × 104 L⊙). In total, we calculate the distance and luminosity of ∼1650 sources, one third of which are above the survey’s completeness threshold. Examination of the sample’s longitude, latitude, radial velocities and mid-infrared images has identified ∼120 small groups of sources, many of which are associated with well-known star formation complexes, such as G305, G333, W31, W43, W49 and W51. We compare the positional distribution of the sample with the expected locations of the spiral arms, assuming a model of the Galaxy consisting of four gaseous arms. The distribution of young massive stars in the Milky Way is spatially correlated with the spiral arms, with strong peaks in the source position and luminosity distributions at the arms’ Galactocentric radii. The overall source and luminosity surface densities are both well correlated with the surface density of the molecular gas, which suggests that the massive star formation rate per unit molecular mass is approximately constant across the Galaxy. A comparison of the distribution of molecular gas and the young massive stars to that in other nearby spiral galaxies shows similar radial dependences. We estimate the total luminosity of the embedded massive star population to be ∼0.76 × 108 L⊙, 30 per cent of which is associated with the 10 most active star-forming complexes. We measure the scaleheight as a function of the Galactocentric distance and find that it increases only modestly from ∼20–30 pc between 4 and 8 kpc, but much more rapidly at larger distances.
Research Interests:
Context. The APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) is the largest and most sensitive systematic survey of the inner Galactic plane in the submillimetre wavelength regime. The observations were carried out with the... more
Context. The APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) is the largest and most sensitive systematic survey of the inner Galactic plane in the submillimetre wavelength regime. The observations were carried out with the Large APEX Bolometer Camera (LABOCA), an array of 295 bolometers observing at 870 μm (345 GHz).
Aims. In this research note we present the compact source catalogue for the 280◦ < l < 330◦ and 21◦ < l < 60◦ regions of this survey. Methods. The construction of this catalogue was made with the source extraction routine SExtractor using the same input parame- ters and procedures as used to analyse the inner Galaxy region presented in an earlier publication (i.e., 330◦ < l < 21◦ ).
Results. We have identified 3523 compact sources and present a catalogue of their properties. When combined with the regions al- ready published, this provides a comprehensive and unbiased database of ∼10 163 massive, dense clumps located across the inner Galaxy.
Research Interests:
We have used the well-selected sample of ∼1750 embedded, young, massive stars identified by the Red MSX Source (RMS) survey to investigate the Galactic distribution of recent massive star formation. We present molecular line observations... more
We have used the well-selected sample of ∼1750 embedded, young, massive stars identified by the Red MSX Source (RMS) survey to investigate the Galactic distribution of recent massive star formation. We present molecular line observations for ∼800 sources without existing radial velocities. We describe the various methods used to assign distances extracted from the literature and solve the distance ambiguities towards approximately 200 sources located within the solar circle using archival H I data. These distances are used to calculate bolometric luminosities and estimate the survey completeness (∼2 × 104 L⊙). In total, we calculate the distance and luminosity of ∼1650 sources, one third of which are above the survey’s completeness threshold. Examination of the sample’s longitude, latitude, radial velocities and mid-infrared images has identified ∼120 small groups of sources, many of which are associated with well-known star formation complexes, such as G305, G333, W31, W43, W49 and W51. We compare the positional distribution of the sample with the expected locations of the spiral arms, assuming a model of the Galaxy consisting of four gaseous arms. The distribution of young massive stars in the Milky Way is spatially correlated with the spiral arms, with strong peaks in the source position and luminosity distributions at the arms’ Galactocentric radii. The overall source and luminosity surface densities are both well correlated with the surface density of the molecular gas, which suggests that the massive star formation rate per unit molecular mass is approximately constant across the Galaxy. A comparison of the distribution of molecular gas and the young massive stars to that in other nearby spiral galaxies shows similar radial dependences. We estimate the total luminosity of the embedded massive star population to be ∼0.76 × 108 L⊙, 30 per cent of which is associated with the 10 most active star-forming complexes. We measure the scaleheight as a function of the Galactocentric distance and find that it increases only modestly from ∼20–30 pc between 4 and 8 kpc, but much more rapidly at larger distances.
Research Interests:
We report the results of 870-μm continuum observations, using the Large APEX Bolometer Camera, towards 77 class-II, 6.7-GHz methanol masers identified by the Methanol MultiBeam (MMB) survey to map the thermal emission from cool dust... more
We report the results of 870-μm continuum observations, using the Large APEX Bolometer Camera, towards 77 class-II, 6.7-GHz methanol masers identified by the Methanol MultiBeam (MMB) survey to map the thermal emission from cool dust towards these objects. These data complement a study of 630 methanol masers associated with compact dense clumps identified from the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) survey. Compact dust emission is detected towards 70 sources, which implies a dust-association rate of 99 per cent for the full MMB catalogue. Evaluation of the derived dust and maser properties leads us to conclude that the combined sample represents a single population tracing the same phenomenon. We find median clump masses of a few 103 M⊙ and that all but a handful of sources satisfy the mass–size criterion required for massive star formation. This study provides the strongest evidence of the almost ubiquitous association of methanol masers with massive, star-forming clumps. The fraction of methanol-maser associated clumps is a factor of ∼2 lower in the outer Galaxy than the inner Galaxy, possibly a result of the lower metallicity environment of the former. We find no difference in the clump-mass and maser-luminosity distributions of the inner and outer Galaxy. The maser-pumping and clump formation mechanisms are therefore likely to be relatively invariant to Galactic location. Finally, we use the ratio of maser luminosity and clump mass to investigate the hypothesis that the maser luminosity is a good indicator of the evolutionary stage of the embedded source, however, we find no evidence to support this.
Research Interests: