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A Precision Test for an Extra Spatial Dimension Using Black Hole–Pulsar Binaries
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We discuss the observable effects of enhanced black-hole mass loss in a black hole–neutron star
(BH–NS) binary, due to the presence of a warped extra spatial dimension of curvature radius L in
the braneworld scenario. For some masses and orbital parameters in the expected ranges the binary
components would outspiral, the opposite of the behavior due to energy loss from gravitational
radiation alone. If the NS is a pulsar, observations of the rate of change of the orbital period with
a precision obtained for the Binary Pulsar B1913+16 could easily detect the effect of mass loss.
For MBH = 7M⊙, MNS = 1.4M⊙, eccentricity e = 0.1, and L = 10µm, the critical orbital period
dividing systems which inspiral from systems which outspiral is P≈6.5 hours, which is within the
range of expected orbital periods; this value drops to P≈4.2 hours for MBH = 5M⊙. Observations
of a BH–pulsar system could set considerably better limits on L in these braneworld models than
could be determined by torsion-balance gravity experiments in the foreseeable future.

PACS numbers: 04.60.Bc, 11.25.Wx, 95.85.Bh

Extra spatial dimensions, beyond the three encoun-
tered in everyday experience, have long been discussed
in theoretical physics [1–3]. Earth-based tests of these
ideas are difficult (e.g., [4]). We discuss an astrophysical
test for the consequences of a particular class of extra
spatial dimension models. The observations and analy-
sis would be similar to work done on the Binary Pulsar
PSR B1913+16 (two neutron stars, one observed as a
pulsar), which provided a high-precision test of the effect
of energy loss by gravitational radiation [5–7]. In the test
presented here the binary pair would consist of a black
hole (BH) and a neutron star (NS) observed as a pulsar.
One reason for interest in extra dimensions is string

theory, the most notable quantum gravity theory, which
requires 6 or 7 extra spatial dimensions [8]. Such extra
dimension could evade detection if they are extremely
small — “compactified” or rolled-up; a coordinate r along
such a dimension is periodic on a length scale L, i.e., r =
r+L. The most natural scale for these dimensions is the
Planck length L ∼

√

~G/c3 ∼ 10−33 cm. Probing that
length scale in accelerators would require energies at the
Planck energy ∼

√

~c5/G ∼ 1019 GeV, 1016 times larger
than the electroweak TeV scale of current experiments
[9].
A second motivation for considering extra spatial di-

mensions is the “hierarchy problem”— the relative weak-
ness of gravity compared to the other three fundamental
forces. If gravitons alone propagate in extra spatial di-
mensions, then the gravitational field of a particle drops
faster than 1/r2 on length scales smaller than the size of
an extra dimension, and is therefore weaker on larger
scales where the inverse-square-law behavior becomes
manifest. In addition, L could be ∼ 1 mm and be un-
detected in particle accelerator experiments (which don’t

probe gravity), and torsion-balance gravity experiments
[10–12]. Gravitational torsion balance experiments have
set a limit of L < 44µm, as discussed by Adelberger et
al. [4]. These authors state that modest improvements
in these torsion balance experiments will occur, but their
own projections show sensitivity far beyond the current
limits may prove difficult in such experiments.
An alternative to compactification is possible. Extra

dimensions of infinite size are allowable, if their geome-
try is “warped” so gravity cannot propagate further than
the length scale set by the torsion-balance experiments.
For one class of models all forces and particles other than
gravitons exist only on a “brane,” which is the boundary
of a infinite, warped “bulk” (e.g., the Randall-Sundrum
2 model, RS2) [13]. In this “braneworld” scenario, our
3+1 dimensional world is the brane, populated with the
standard-model particles and forces. An extra spatial di-
mension is “orthogonal” to the brane, forming the bulk.
In such warped models the bulk must be an anti de Sitter
(AdS) space. Gravitons propagate on the brane and in
the bulk, thus, in principle, resolving the hierarchy prob-
lem. The “warping” amounts to a redshifting of gravity
as it propagates into the bulk, so, in effect, gravitational
experiments only probe a short distance into the bulk.
Much work has been done to understand the nature

of black holes in the braneworld scenario [14]. Because
the bulk space is anti de Sitter space, application of the
AdS/CFT conjecture [15] becomes possible, particularly
in the context of RS2. The result is that the full classical
5D braneworld black hole solution is equivalent to a 4D
quantum corrected black hole. Moreover, this analysis
yields a dramatically increased evaporation rate for large
black holes due to the existence of conformal degrees of
freedom [16]. This conclusion was challenged in [17] in
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which a static black hole solution was demonstrated to
exist. This solution however was found to be unstable.
Moreover, numerical investigations have failed to yield
evidence of a stable static macroscopic black hole in the
context of the braneworld scenario [18, 19]. The lack of
a dynamically stable solution may serve to indicate that
the RS2 model implies a dramatic increase in the amount
of Hawking radiation emitted by macroscopic black holes.

Note that we can give a broader heuristic argument for
the general significance of quantum gravity in relativis-
tic astrophysical situations involving black holes, without
tying ourselves directly to specific models involving extra
dimensions. On general grounds [20], quantum gravity,
due to its essential non-locality dictated by the under-
lying classical symmetry of general coordinate transfor-
mations, can be argued to be sensitive to other scales,
such as the TeV scale of particle physics, where, also, by
unitarity, new physical phenomena are expected to ap-
pear. Similarly, the increased evaporation rate can be
expected based on models of black holes as bound states
of these essentially non-local quantum gravitational de-
grees of freedom. Such models often arise in the analysis
of black hole evaporation in string theory [21], in which
the non-local, stringy, quantum gravitational degrees of
freedom can spread from the Planck scale to large, astro-
physically significant scales. Thus a very large number of
degrees of freedom can be transferred from very small to
very large length scales, providing an enhanced evapora-
tion rate that is crucial for the discussion that follows.

Some observable astrophysical implications of these re-
sults were explored in [22]. Observations of X-ray bi-
nary systems (BH + an evolved companion star) can po-
tentially constrain the size of extra dimensions in the
braneworld scenario [23–25]. The constraints rely on the
kinematic age for the system or observational limits on
any change in the orbital period of the system. These
observations have the potential to set lower limits than
can be obtained by current torsion-balance experiments.
In the case of the X-ray binary XTE J1118+480, Jo-
hannsen [24] calculates a limit of 35µm on the size of
an extra dimension. However, the physical complexity
of such systems and our limited understanding of their
astrophysical behavior makes a proper interpretation of
the observations difficult, and perhaps ambiguous. While
limits from torsion-balance experiments may not be able
to set such low limits, they provide cleaner experimental
setups, with a more straight-forward interpretation.

Cleaner astrophysical binary systems comprise compo-
nents that can be treated as point masses, with no mass
exchange. McWilliams [26] discusses a BH–BH or BH–
NS system with enhanced BH evaporation, as it would be
observed by a gravity wave detector such as the proposed
Laser Interferometer Space Antenna (LISA). As we will
discuss below, BH mass loss can lead to an outspiral of
the binary components, while the effect of gravitational
radiation produces inspiral. As discussed by McWilliams,
for expected binary system parameters a changing or-
bital period (i.e., chirping of the gravity wave signal)

could not be measured by LISA, thus one could not di-
rectly confirm an outspiral behavior. However, if one
assumes any observed binary of sufficiently small orbital
period has reached that period by inspiraling, then one
can set a limit on L. For expected periods and masses,
McWilliams shows that a limit of L < 5µm can be set.
We consider a binary system consisting of a BH and

an NS, where the NS is a pulsar. Observations of the
pulsar could be used to measure the changing orbital
period of the system with sufficiently high precision to
either directly observe the outspiral behavior, or mea-
sure the competing contributions of mass loss and grav-
itational radiation as they affect the inspiral rate of the
system. Alternatively, improved limits could be set on
the size of an extra dimension. We are motivated by the
PSR B1913+16 Binary Pulsar case, where observations
of the one NS that acts as a pulsar have yielded high pre-

cision determinations of the parameters of the system,
and have provided a dramatic test of relativistic physics.
The BH evaporation rate in the braneworld scenario is

given by

ṀBH = −2.8× 10−7M−2

BHL2

10
M⊙ y−1 , (1)

where MBH is the black hole mass in solar masses, and
L10 is the AdS radius in units of 10 µm [16, 22]. Here-
after, M and m represent masses in units of solar masses
and SI units, respectively. The current bound on the AdS
radius is L < 44µm [4] from torsion-balance experiments.
We take L = 10µm (i.e., L10 = 1) as a nominal value in
the discussions that follow.
Consider a BH–NS binary system, with mass loss

alone. We will use the results of Hadjidemetriou [27, 28],
who analyzed the dynamical behavior of a binary system
with isotropic mass loss from one or both components, in
the classical case (relativistic corrections will be consider-
ably smaller in magnitude than the results obtained here
[29]). Intuitively, the binary pair becomes less tightly
bound, so the components must separate over time and
the orbital period will increase. In a fixed, non-rotating
frame of reference, let m1, and m2 be the masses of the
two components, and m = m1+m2. The rates of change
of the osculating elements for the orbit of m2 relative to
m1 are given by

ȧ =− a
1 + 2e cos θ + e2

1− e2
ṁ

m
= −a

ṁ

m
, (2)

ė =− (e+ cos θ)
ṁ

m
= 0, (3)

ω̇ =−
sin θ

e

ṁ

m
= 0 (4)

where a is the semi-major axis, e is the eccentricity, ω
is the longitude of periastron, and θ is the true anomaly
[27, 28]. The results given above are averages over one
orbit, assuming ṁP ≪ m (as is our case); one orbit is
well approximated by a Keplerian orbit where the average
of cos θ = −e [30] and the average of sin θ = 0.
Kepler’s third law relates P , a, and m. Thus, to lowest

order the rate of change of the orbital period due to mass
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loss (ML), averaged over one orbit, is

ṖML =
3

2
P
ȧ

a

(

1−
1

3

ṁ

m

a

ȧ

)

= 2P
ȧ

a
. (5)

Summarizing the results in terms of the parametersm,
ṁ, and P , we have ėML = ω̇ML = 0 and

ȧML = −

(

G

4π2

)1/3 (
P

m

)2/3

ṁ, (6)

ṖML = −2P
ṁ

m
. (7)

For mass loss, a and P increase. In the braneworld sce-
nario the mass loss rate for the binary is the mass loss
rate from the black hole, given by eq. (1).
The effects of energy loss by gravitational radiation

from a binary system are well known ( e.g., [31, 32]): a
and P decrease — opposite results from the mass-loss
scenario. For two point masses (i.e., a ≫ radius of either
object), and where averages over one orbit are of suffi-
cient accuracy, from Peters [32], and Taylor andWeisberg
[6] (in the context of the PSR B1913+16), we have

ȧGR = −
256π2

5

G2

c5
m1m2

P 2

(

1 + 73

24
e2 + 37

96
e4
)

(1− e2)
7/2

, (8)

ṖGR = −
192π

5

(2πG)
5/3

c5
m1m2

m1/3P 5/3

(

1 + 73

24
e2 + 37

96
e4
)

(1− e2)
7/2

,

(9)

ėGR = −
304

15

(

4π2
)4/3 G5/3

c5
m1m2

M1/3P 8/3

e
(

1 + 121

304
e2
)

(1− e2)
5/2

,

(10)

ω̇GR = 6π
(

4π2
)1/3 G2/3

c2
m2/3

P 5/3

(

1− e2
)−1

. (11)

Henceforth, we will concentrate on ȧ, which is most
readily observed as a rate of change of the period Ṗ .
It is instructive to examine the above results in terms

of specific values for the parameters. Consider a binary
comprising a black hole of mass MBH = 3 (units of M⊙)
and neutron star of mass MNS = 1.4, with orbital period
P10 = 1 in units of 10 hours. The semi-major axis is

a = 2.68× 109 m (MBH +MNS)P10 (12)

which is ∼ R⊙ ≫ radius of either object.
Considering the effect of mass loss only, we find

ȧML = 19 m y−1

(

MBH +MNS

4.4

)−2/3 (
MBH

3

)−2

× P
2/3
10

L2

10
, (13)

ṖML = 0.51 ms y−1

(

MBH +MNS

4.4

)−1 (

MBH

3

)−2

× P10L
2

10
, (14)

which are independent of e.
Considering only the effect of gravitational radiation,

with no mass loss, we have

ȧGR = −0.38 m y−1

(

MBH

3

)(

MNS

1.4

)

P−2

10
f(e), (15)

ṖGR = −0.0076 ms y−1

(

MBH

3

)(

MNS

1.4

)

×

(

MBH +MNS

4.4

)−1/3

P
−5/3
10

f(e), (16)

where

f(e) =

(

1 +
73

24
e2 +

37

96
e4
)

(

1− e2
)−7/2

. (17)

Clearly, for systems with these parameters the enhanced
mass loss dominates the evolution of P .
Consider a specific case with P = 7.75 hours and

e = 0.6, motivated by PSR B1913+16. The observed
rate of change of the orbital period for the binary pulsar
PSR B1913+16 is Ṗ = (−2.4184 ± 0.0009) × 10−12 s/s
= (−0.076 ± 0.00003) ms y−1 [7]. For L10 = 1, we find

ȧML = 16 m y−1, and ṖML = 0.40 ms y−1, while the ef-
fects due to gravitational radiation are of opposite sign,
but roughly 4 times smaller, at ȧGR = −3.9 m y−1, and
ṖGR = −0.12 ms y−1. ṖML = 0.40 ms y−1 is about
13,000 times larger than the precision on the measured
rate of change of the orbital period of PSR B1913+16.
The effect of mass loss could be well-determined by ob-
servations of a similar precision.
In a BH–NS system gravitational radiation and BH

mass-loss produce opposite effects. For small P , gravi-
tational radiation dominates and P will decrease as the
binary components inspiral and eventually coalesce. For
large P , BH mass-loss dominates, thus P increases and
the components outspiral. The critical orbital period
Pcritical which separates these two disparate behaviors is

Pcritical ≈ 2.1 hours

(

MBH

3

)9/8 (
MNS

1.4

)3/8

×

(

MBH +MNS

4.4

)1/4

L
−3/4
10

f(e)3/8. (18)

If a significant number of binaries have P > Pcritical

there are implications for discussions of the number of
BH–NS binaries in the Galaxy, since such discussions as-
sume all binary systems inspiral and eventually cease to
exist. There would also be implications for gravity wave
searches, which depend on the number of inspiraling com-
pact object binaries.
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Pfahl et al. [33] investigated the theoretical formation
rate and evolution of BH–NS binaries where the NS is a
“recycled” pulsar (an increased spin rate from accretion,
thus a greater pulsar “clock” stability, yielding higher
precision observations, e.g., PSR B1913+16). They find
that most newly formed BH–NS pairs of this sort have an
orbital period of 2–7 hours, with a peak near 3 hours, and
an eccentricity e < 0.3, with a peak near 0.1. The BH
masses range from 5–10 M⊙, with an average of ≈ 7 M⊙.
Taking MBH = 7, MNS = 1.4, P = 3 hours, e = 0.1,

and L = 10µm, we obtain ṖML = 0.015 ms y−1, and
ṖGR = −0.11 ms y−1. The effect of gravitational radia-
tion is ten times larger than the effect of mass loss, but
precision measurements of the orbital period would show
a deviation from the results due to gravitational radiation
alone: ṖML = 0.015 ms y−1 is well above the obtainable
observational precision (±0.00003 ms y−1). Note that
the critical period for inspiral versus outspiral is 6.5 hours
for these masses, eccentricity, and AdS radius, which is
within the range of orbital periods expected; it is as low
as 4.2 hours for MBH = 5.
Pfahl et al. [33] also determined the expected number

of BH–NS binaries with a recycled pulsar in our Galaxy
to be less than ∼10. This number is quite small in part
because of the expected coalescence rate of systems with
periods of 3–4 hours and inspiral lifetimes of ∼ 108 years.
But the effect of mass loss, if present, is not accounted
for, of course. BH-NS systems that don’t contain a recy-

cled pulsar are also possible, and Belczynski, et al. [34]
estimate there are some hundreds of such systems in to-
tal. Nevertheless, the search for BH–NS systems (with an
observable pulsar) will be difficult, of course. However,
searches for pulsars in binary systems are of particular
interest, and these searches will become more sensitive
with the appearance of new instruments, (e.g., the Square
Kilometer Array).
Given the prospects for improvement of torsion-

balance measurements over the coming decades, it is rea-
sonable to ascertain the prospects for BH–NS observa-
tions in setting limits on the size of an extra spatial di-
mension. Taking ±0.00003 ms y−1 to be the nominal pre-
cision for measurements of the rate of change of orbital
period for any BH–NS system, then from eq. (14), obser-
vations of a BH–NS system with those parameters could
be used to set a 5σ upper limit to the size of the extra di-
mension at L ≈ 0.17µm, more than 250 times better than
the current limit of 44µm from torsion-balance experi-
ments, and probably considerably better than could be
set by earth-based torsion-balance gravity experiments in
the foreseeable future.
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