In Situ Tissue Regeneration of Renal Tissue Induced by Collagen Hydrogel Injection

Stem Cells Transl Med. 2018 Feb;7(2):241-250. doi: 10.1002/sctm.16-0361.

Abstract

Host stem/progenitor cells can be mobilized and recruited to a target location using biomaterials, and these cells may be used for in situ tissue regeneration. The objective of this study was to investigate whether host biologic resources could be used to regenerate renal tissue in situ. Collagen hydrogel was injected into the kidneys of normal mice, and rat kidneys that had sustained ischemia/reperfusion injury. After injection, the kidneys of both animal models were examined up to 4 weeks for host tissue response. The infiltrating host cells present within the injection regions expressed renal stem/progenitor cell markers, PAX-2, CD24, and CD133, as well as mesenchymal stem cell marker, CD44. The regenerated renal structures were identified by immunohistochemistry for renal cell specific markers, including synaptopodin and CD31 for glomeruli and cytokeratin and neprilysin for tubules. Quantitatively, the number of glomeruli found in the injected regions was significantly higher when compared to normal regions of renal cortex. This phenomenon occurred in normal and ischemic injured kidneys. Furthermore, the renal function after ischemia/reperfusion injury was recovered after collagen hydrogel injection. These results demonstrate that introduction of biomaterials into the kidney is able to facilitate the regeneration of glomerular and tubular structures in normal and injured kidneys. Such an approach has the potential to become a simple and effective treatment for patients with renal failure. Stem Cells Translational Medicine 2018;7:241-250.

Keywords: Collagen; Regeneration; Renal failure; Renal progenitors; Tissue-specific stem cells.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antigens, CD / metabolism
  • Biocompatible Materials / pharmacology
  • Biomarkers / metabolism
  • Collagen / pharmacology*
  • Hydrogels / pharmacology*
  • Kidney Diseases / drug therapy*
  • Kidney Diseases / metabolism
  • Kidney Glomerulus / drug effects*
  • Kidney Glomerulus / metabolism
  • Mesenchymal Stem Cells / drug effects
  • Mesenchymal Stem Cells / metabolism
  • Mice
  • Mice, Inbred C57BL
  • Rats
  • Regeneration / drug effects*
  • Reperfusion Injury / drug therapy*
  • Reperfusion Injury / metabolism

Substances

  • Antigens, CD
  • Biocompatible Materials
  • Biomarkers
  • Hydrogels
  • Collagen